Quantitative Understanding in Biology
Module I: Statistics
Lecture I: Characterizing a Distribution

Mean and Standard Distribution
Biological investigation often involves taking measurements from a sample of a population.

The mean of these measurements is, of course, the most common way to characterize their distribution:

The concept is easy to understand and should be familiar to everyone. However, be careful when
implementing it on a computer. In particular, make sure you know how the program you are using deals
with missing values:

> x <= rnorm(10) Generates 10 random samples from a normal
> X . . .
[1] -0.05102204 0.38152698 0.66149378 distribution.
[4] 0.41893786 -1.01743583 -0.55409120
[7] -0.14993880 -0.31772140 -0.44995050
[10] -0.69896096
> mean (x) Computes the mean
[1] -0.1777162
> x[3] <- NA Indicate that one of the values is unknown
> X
1] -0.05102204 0.38152698 NA

(

[4] 0.41893786 -1.01743583 -0.55409120
[7] -0.14993880 -0.31772140 -0.44995050
[10] -0.69896096

> mean (x) The mean cannot be computed, unless you ask

[1] NA - .
> mean (x, na.rm=TRUE) that missing values be ignored.

[1] -0.2709618

> sum (x) Computing the mean ‘manually’ requires careful

1] NA .
um(x, na.rm—TRUE) attention to NAs.

s
] -2.438656

length (x)

] 10
length(na.omit (x))
1

s

]

um (x, na.rm=TRUE)/length (na.omit (x))
-0.2709618

Similar principles hold when using Microsoft Excel. Try using the AVERAGE () and SUM () functions.
What is the difference in behavior when you leave a cell empty vs. when you use the NA () function?




Characterizing a Distribution

Other Measures of Central Tendency

In addition to the mean (or more precisely the arithmetic mean), you’ve probably also seen other
measures of central tendency. The median is the value above which (and below which) 50% of the data
is found. The median is less sensitive to outliers. One case where the median can be convenient is when
measuring distributions of times before an event occurs, e.g., how long it takes an animal to learn a task.
If you want to report the mean, you need to wait for all the animals in your population to learn the task,
which could be a really long time if there are one or two particularly dumb animals in your sample
population, and may become undefined if one of your animals dies before it learns the task. You can,
however, report the median after just over half of your animals learn the task.

The mode is not often used in biological applications of statistics.

You may have also heard of the harmonic mean and the geometric mean. The relevant formulae are

. 1 1ol
Harmonic Mean: — = =) —
Hy nT xj

1
Geometric Mean: GM, = \/xy - x, x5 -2, = Y[ x; = eniinx

The harmonic mean is just the reciprocal of the average of the reciprocals of the measurements you
have. You should think of this as transforming your data into a more natural or meaningful space, taking
a regular (arithmetic) average, and then applying the inverse transform. In this case the transformation
is a reciprocal.

The geometric mean is similar in spirit, except that the transformation is taking a logarithm, and the
inverse transformation is taking the antilog (i.e., €”).

Measures of Variation

The simplest measure of variation is the range (lowest, highest). The problem with this is that the range
will typically vary systematically with sample size; it is a biased estimate. Contrast to average: your best
guess of the mean of the population is the mean of the sample. We say the estimate is unbiased.

In addition to the mean, the standard deviation and (to a lesser extent) the variance are also commonly
used to describe a distribution of values:

( Sample ) 2o Y (g — %)
Variance N-1

Sample
(Standard) =s= / Sample =
L. Variance
Deviation

Observe that the variance is an average of the square of the distance from the mean. All terms in the
summation are positive because they are squared.
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Characterizing a Distribution

When computing the variance or standard deviation (SD) of a whole population, the denominator would
be N instead of N-1. The variance of a sample from a population is always a little bit larger, because the
denominator is a little bit smaller. There are theoretical reasons for this having to do with degrees of
freedom; we will chalk it up to a “weird statistics thing” (it is actually a correction that turns the SD into
an unbiased estimate).

Observe that the standard deviation has the same units of measure as the values in the sample and of
the mean. It gives us a measure of how spread out our data is, in units that are natural to reason with.

In the physical sciences (physics, chemistry, etc.), the primary source of variation in collected data is
often due to “measurement error”: sample preparation, instrumentation, etc. This implies that if you
are more careful in performing your experiments and you have better instrumentation, you can drive
the variation in your data towards zero. Think about measuring the boiling point of pure water as an
example. Some argue that if you need complex statistical analysis to interpret the results of such an
experiment, you've performed the experiment badly, or you’ve done the wrong experiment.

Although one might imagine that an experimenter would always use the best possible measurement
technology available (or affordable), this is not always the case. When developing protocols for CT scans,
one must consider that the measurement process can have deleterious effects on the patient due to the
radiation dose required to carry out the scan. While more precise imaging, and thus measurements (say
of a tumor size), can often be achieved by increasing the radiation dose, scans are selected to provide
just enough resolution to make the medical diagnosis in question. In this case, better statistics means
less radiation, and improved patient care.

In biological systems, the primary source of variation is often “biological diversity”. Cells and patients are
rarely identical and will generally not be identical states, so you expect a non-trivial variation, even
under perfect experimental conditions. In biology, we must learn to cope with (and ultimately embrace)
this naturally occurring variation.

Communicating a Distribution
X and SD have a particular meaning when the distribution is normal. For the moment, we’ll not assume
anything about normality, and consider how to represent a distribution of values.

Histograms convey information about a distribution graphically. They are easy to understand, but can be
problematic because binning is arbitrary. There are essentially two arbitrary parameters that you select
when you prepare a histogram: the width of the bins, and the alignment, or starting location, of the
bins. For non-large N, the perceptions suggested by a histogram can be misleading.

> set.seed(0) Three histograms are prepared; the same data are
> X <- rnorm(50) presented, but, depending on the binning, a
> hist(x, breaks=seq(-3,3,length.out=6)) different underlying distribution is suggested.

> hist(x, breaks=seq(-3,3,length.out=7))
> hist(x, breaks=seq(-3,3,length.out=12))
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Characterizing a Distribution

When preparing histograms, be sure that the labels on the x-axis are chosen so that the binning intervals
can be easily inferred. The first plot would better be prepared including one additional option: xaxp =
c(-3,3,5).See the entry for par in the R help for this any many other plotting options; type ?par at
the R prompt.

R has a less arbitrary function, density, which can be useful for getting the feel for the shape of an
underlying distribution. This function does have one somewhat arbitrary parameter (the bandwidth); it
is fairly robust and default usually works reasonably well.

> hist(x, breaks=seq(-3,3,length.out=13), xaxp=c(-3,3,4),
probability=TRUE); lines(density(x))

Note that we add the probability option to the hist function; this plots a normalized histogram,
which is convenient, as this is the scale needed by the overlayed density function.

You should be wary of using summary statistics such as X and SD for samples that don’t have large N or
that are not known to be normally distributed. For N=50, as above, other options include:

e Atable of all the values: sort (x)
e A more condensed version of the above: stem (x)

For graphical presentations, do not underestimate the power of showing all of your data. With judicious
plotting choices, you can often accomplish this for N in the thousands.

stripchart (x) shows all data points. For N =50, stripchart (x, pch="|") might be more
appropriate.

If you must prepare a histogram (it is often expected), overlaying the density curve and sneaking in a
stripchart-like display can be a significant enhancement:

> hist(x, breaks=seqg(-3,3,length.out=13), xaxp=c(-3,3,4),
probability=TRUE); lines (density(x))

> rug(x)
For larger N, a boxplot can be appropriate:
> x <- rnorm(1000); boxplot (x)

You can overlay (using the add=TRUE option) a stripchart to show all data points. With many data
points, a smaller plotting symbol and the jitter option are helpful.

> stripchart(x, vertical=TRUE, pch=".", method="jitter", add=TRUE)

Note that boxplots show quartiles. The heavy bar in the middle is the median, not the mean. The box
above the median is the third quartile; 25% of the data falls in it. Similarly, the box below the median
holds the second quartile. The whiskers are chosen such that, if the underlying distribution is normal,
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Characterizing a Distribution

roughly 1 in 100 data points will fall outside their range. These are putative outliers that you may want

to further inspect.

The concept of quartiles can be generalized to quantiles. Another way to characterize distributions is by

reporting quantiles; quartiles and deciles are favorites:

> quantile (x,
-2.99767066 -0.69364940 -0.01546943
> quantile (x,
-2.
-0.

3.

0%

0%
99767066
50%
01546943
100%
02193840

-1.20812215

(O

4)/4)
25%

(0:10) /10)

10%

60%

0.22308820

50% 75% 100%
0.65434645 3.02193840

20% 30% 40%
-0.87560155 -0.53779019 -0.26516716
70% 80% 90%
0.48496338 0.78565873 1.18193333

SD is a representation of how spread out your data are. If the underlying distribution is normal and N is

large, then 95% of the samples are expected to fall within the range: ¥ + 1.96 - SD.

> X <= rnorm(100000)
> mean (x)

(1]

0.001076

> sd(x)

(1]

> quantile (x,

-4,

1.000764

0%
754242304
10%

.280851350

20%

.841499568

30%

.526768394

40%

.252345155

50%

.003971025

60%

.257026661

70%

.528821444

80%

.842717888

90%

.277188560

100%

.336132109

443

(0:40)/40)

2.5%
964334170
12.5%

.147004677

22.5%

.754756972

32.5%

.455779370

42 .5%

.187829088

52.5%

.066956941

62.5%

.321183502

72.5%

.601289931

82.5%

.933548945

92.5%

.435926218

5%

.650846246

15%

.035610266

25%

.679036632

35%

.385446675

45%

.123271243

55%

.129356108

65%

.388136537

75%

.677759750

85%

.035464420

95%

.637997636

7.5%

.442248402

17.5%

.935114705

27.5%

.600832587

37.5%

.317184080

47.5%

.058831369

57.5%

.192253012

67.5%

.458046456

77.5%

.758717314

87.5%

.145487565

97.5%

.964227885
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Characterizing a Distribution

We expect the mean to be zero, the SD to be unity, the 2.5% quantile to be at -1.96, and the 97.5%
quantile to be at +1.96.

Standard Deviation vs. Standard Error of the Mean
An important, but very different, question that statistics can help us with is how well we can estimate
the mean. Two factors influence this: how spread out the data are, and how much data we have. A new
guantity, the Standard Error of the Mean, is introduced:

SD

SEM = —
Vn

For large N, we can be 95% sure that the true mean of the underlying population is in the range...
X+196-SEM
..where X is the sample mean. We will formalize and extend this result in another session.

Here is an experiment to demonstrate this. We generate a sample from a known normal distribution
where the mean is zero and the standard deviation is unity, then compute a confidence interval (Cl) for
the mean. We expect that this Cl will contain the true mean (which we know to be zero) roughly 19 out
of 20 times.

> for (i in 1:100) {

+ x <— rnorm(10000)

+ print (mean(x) + c(-1.96, 0, 1.96) * sd(x) / sqgqrt(length(x)))
_I_

}

[1] -0.024301502 -0.004775178 0.014751146 [1] -0.0004399937 0.0190984618 0.0386369172
[1] -0.026626053 -0.006999663 0.012626728 [1] -0.0395574949 -0.0198794721 -0.0002014492
[1] -0.021006574 -0.001665145 0.017676283 [1] -0.030405467 -0.010958771 0.008487925
[1] -0.023918612 -0.004202195 0.015514221 [1] -0.026741095 -0.007219373 0.012302349
[1] -0.0389625436 -0.0193659724 0.0002305987 [1] -0.0195650260 0.0001406561 0.0198463383
[1] -0.035444374 -0.015853783 0.003736808 [1] -0.010852923 0.008932587 0.028718097
[1] -0.02646289 -0.00695293 0.01255703 [1] -0.021023184 -0.001362284 0.018298616
[1] -0.014265428 0.005169996 0.024605420 [1] -0.032128012 -0.012800292 0.006527427
[1] -0.006374521 0.013183087 0.032740695 [1] -0.014295601 0.005436455 0.025168511
[1] -0.027726532 -0.008195687 0.011335157 [1] -0.010071603 0.009548244 0.029168092
[1] -0.028349554 -0.008883653 0.010582248 [1] -0.023738067 -0.004131066 0.015475936
[1] -0.031477297 -0.011958221 0.007560854 [1] -0.009742657 0.009975540 0.029693737
[1] -0.024676765 -0.005038202 0.014600361 [1] 0.008632623 0.028290878 0.047949132

[1] 0.001781225 0.021552050 0.041322876 [1] -0.017761529 0.001915428 0.021592384
[1] -0.027024247 -0.007516368 0.011991510 [1] -0.01060836 0.00924938 0.02910712

[1] -0.011989703 0.007447232 0.026884167 [1] -0.0201786752 -0.0005449171 0.0190888409
[1] -0.015610630 0.004039557 0.023689743 [1] -0.022384361 -0.002820761 0.016742839
[1] -0.013781684 0.005884203 0.025550091 [1] -0.021063830 -0.001345081 0.018373668
[1] -0.026578015 -0.006881238 0.012815538 [1] -0.016937999 0.002667279 0.022272557
[1] -0.0205013516 -0.0007041864 0.0190929788 [1] -0.018183755 0.001535473 0.021254700
[1] -0.016042673 0.003399703 0.022842080 [1] -0.036550951 -0.016922209 0.002706532
[1] -0.002855254 0.016817403 0.036490060 [1] -0.022773824 -0.003336013 0.016101799
[1] -0.034024678 -0.014692288 0.004640103 [1] -0.015164353 0.004381009 0.023926372
[1] -0.007221995 0.012408992 0.032039980 [1] -0.012301662 0.007435353 0.027172368
[1] -0.009129527 0.010746901 0.030623328 [1] -0.017349224 0.002106028 0.021561280
[1] -0.013079007 0.006672627 0.026424261 [1] -0.016890972 0.002804223 0.022499418
[1] -0.022694849 -0.003307884 0.016079082 [1] -0.013442029 0.006092335 0.025626700
[1] -0.027884371 -0.008532565 0.010819241 [1] -0.014835716 0.004868907 0.024573530
[1] 0.00974305 0.02926519 0.04878734 [1] -0.008241882 0.011418128 0.031078138
[1] -0.027234717 -0.007591476 0.012051764 [1] -0.02932350 -0.00965467 0.01001416

[1] -0.003150395 0.016241695 0.035633785 [1] -0.024917504 -0.005348383 0.014220739
[1] -0.011179020 0.008338268 0.027855557 [1] -0.030790123 -0.011296159 0.008197805
[1] -0.009063754 0.010312788 0.029689330 [1] -0.036026598 -0.016414003 0.003198591
[1] -0.016275525 0.003311566 0.022898658 [1] -0.034872802 -0.015233129 0.004406544
[1] -0.041542741 -0.021898218 -0.002253696 [1] -0.018245860 0.001475052 0.021195964
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[1] -0.023516307 -0.003742883 0.016030542
[1] -0.024021403 -0.004490213 0.015040977
[1] -0.010607586 0.009004412 0.028616410
[1] -0.009601862 0.009955746 0.029513354
[1] -0.020615433 -0.001143053 0.018329327
[1] -0.016035976 0.003725782 0.023487540
[1] -0.0203469118 -0.0006296587 0.0190875944
[1] -0.03135966 -0.01174369 0.00787228
[1] -0.016250733 0.003365887 0.022982508
[1] -0.041422524 -0.021735918 -0.002049312
[1] -0.027268162 -0.007798383 0.011671397
[1] -0.029318299 -0.010000627 0.009317046
[1] -0.024506008 -0.004866441 0.014773125
[1] -0.023804302 -0.004134864 0.015534575
[1] -0.017442125 0.002055394 0.021552913

[1]
[1]
[1]
[1]
[1]
[1]

.022553148
.004416301
.009665545
.034476602
.025977733
.002699036
.010480175
.032002546
.029632377 .
.0203449679 -0.0006713485
.0200708700 -0.0004346696
.023238939 -0.003659484
.024821591 -0.004881682
.011626945
.0194360411

-0.
0.
0.

-0.

-0.
0.
0.

-0.

-0

0.
0.0001868259

003004035
014960588
009813423
014773927
006251579
017051743
009363427
012307894
009711457

007985632

[eNeNeNoNeoNeoNeNeNe]

0.
0.
0.

.016545078
.034337478
.029292391
.004928748
.013474575
.036802521
.029207029
.007386758
.010209464

0.0190022710
0.0192015309
015919971
015058228
027598210
0.0198096930

This is pretty close to what was expected; in this particular case the true mean was not within the Cl in

six cases out of 100 (we expected about five).

To reiterate, understanding the difference between the SD and the SEM is critical. The SD gives us an

indication of how spread out the data in the underlying population is. The SEM is an indication of how

confident we are in our estimate of the true mean of the underlying population.

Many plots in publications show error bars. There is no standard as to what these represent; it could be
1SD, +SEM, +£1.96SD, +1.96SEM, or, as we will see later, something else. If the publication does not
explicitly state what the error bars represent, they are of no use to you (and you might begin to question

the underlying analysis).
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